Handbook of Sharing Confidential Data
해외직수입Handbook of Sharing Confidential Data : Differential Privacy, Secure Multiparty Computation, and Synthetic Data Hardcover
도서정보
정가
338,200원
판매가
304,380원 (10% 할인)
저자
Jörg Drechsler, Daniel Kifer, Jerome Reiter, Aleksandra Slavkovic
출판사
Chapman and Hall/CRC
발행일
2024-10-09   
ISBN
9781032028033
언어
영어
페이지수
376 쪽
사이즈
178*254 mm
무게
453 gr
배송정보
배송비
배송옵션에 따라 상이

상품정보

Statistical agencies, research organizations, companies, and other data stewards that seek to share data with the public face a challenging dilemma. They need to protect the privacy and confidentiality of data subjects and their attributes while providing data products that are useful for their intended purposes. In an age when information on data subjects is available from a wide range of data sources, as are the computational resources to obtain that information, this challenge is increasingly difficult. The Handbook of Sharing Confidential Data helps data stewards understand how tools from the data confidentiality literature—specifically, synthetic data, formal privacy, and secure computation—can be used to manage trade-offs in disclosure risk and data usefulness.

Key features:

• Provides overviews of the potential and the limitations of synthetic data, differential privacy, and secure computation

• Offers an accessible review of methods for implementing differential privacy, both from methodological and practical perspectives

• Presents perspectives from both computer science and statistical science for addressing data confidentiality and privacy

• Describes genuine applications of synthetic data, formal privacy, and secure computation to help practitioners implement these approaches

The handbook is accessible to both researchers and practitioners who work with confidential data. It requires familiarity with basic concepts from probability and data analysis.


저자소개

Jörg Drechsler is Head of the Department for Statistical Methods at the Institute for Employment Research in Nuremberg, Germany, and Professor of Statistical Science at the Institute for Statistics at the Ludwig-Maximilians-University in Munich. He is also Associate Research Professor in the Joint Program in Survey Methodology at the University of Maryland. His main research interests are data confidentiality and nonresponse in surveys. He is a fellow of the International Statistical Institute. He received his PhD in Social Science from the University of Bamberg and his Habilitation in Statistics from the Ludwig-Maximilians-Universität in Munich.

Daniel Kifer is Professor of Computer Science at Penn State University. He has published extensively on technical approaches for privacy and confidentiality, with work spanning attack algorithms, novel methods for disclosure avoidance, statistical analysis of perturbed data, and automated tools for catching implementation errors. In 2016–2017, Kifer spent his sabbatical at the U.S. Census Bureau and helped design the disclosure avoidance system used for the 2020 Decennial Census. Kifer obtained his bachelor’s degrees in mathematics and computer science at New York
University and his PhD at Cornell.

Jerome Reiter is Professor of Statistical Science at Duke University. His primary research areas include methods for protecting data confidentiality, for handling missing values, and for integrating data across multiple sources. He has worked extensively on theory, methods, and applications for synthetic data. He is Fellow of the Institute of Mathematical Statistics and the American Statistical Association. He received a PhD in statistics from Harvard University and his undergraduate degree from Duke University.

Aleksandra Slavkovic is Professor of Statistics & Public Health Sciences, Dorothy Foehr Huck and J.Lloyd Huck Chair in Data Privacy and Confidentiality, and Associate Dean for Research, Eberly College of Science at Penn State. Her research focuses on methodological developments in the area of data privacy and confidentiality in the context of small- and large-scale surveys, health, genomic, and network data, including work on differential privacy and broad data access that offers guarantees of accurate statistical inference needed to support reliable science and policy. She is Fellow of the American Statistical Association, the Institute of Mathematical Statistics, and the International Statistical Institute. She received her PhD (2004) and MS (2001) in statistics and Master of Human-Computer Interaction (1999) from Carnegie Mellon University. She received her BA in psychologyfrom Duquesne University (1996).

교환/반품 안내

반품/교환 방법 마이페이지 > 고객센터 1:1문의 작성 또는 고객센터 (02-322-2426)
반품/교환가능 기간 변심반품의 경우 수령 후 7일 이내, 상품의 결함 및 계약내용과 다를 경우 문제점 발견 후 30일 이내
파본 등 상품결함 시 '문제점 발견 후 30일(단, 수령일로 부터 3개월)' 이내
반품/교환비용 변심 혹은 구매착오로 인한 취소/반품은 판매가의 20% 취소수수료 고객 부담

* 취소수수료 : 수입제반비용(국내 까지의 운송비, 관세사비, 보세창고료, 내륙 운송비, 통관비 등)과 재고리스크(미판매 리스크, 환차손)에 따른 비용 등
단, 아래의 주문/취소 조건인 경우, 취소 수수료 면제
오늘 00시~06시 주문시 오늘 06시 이전 취소
오늘 06시 이후 주문 후 다음 날 06시 이전 취소
반품/교환 불가 사유 1) 소비자의 책임 있는 사유로 상품 등이 손실 또는 훼손된 경우 (단지 확인을 위한 포장 훼손은 제외)
2) 소비자의 요청에 따라 개별적으로 주문 제작되는 상품의 경우
3) 시간의 경과에 의해 재판매가 곤란한 정도로 가치가 현저히 감소한 경우
4) 전자상거래 등에서의 소비자보호에 관한 법률이 정하는 소비자 청약철회 제한 내용에 해당되는 경우
상품 품절 공급사(출판사) 재고 사정에 의해 품절/지연될 수 있으며, 품절 시 관련 사항에 대해서는 이메일과 문자로 안내드리겠습니다.
소비자 피해보상 환불 지연에 따른 배상 1) 상품의 불량에 의한 교환, A/S, 환불, 품질보증 및 피해보상 등에 관한 사항은 소비자분쟁 해결 기준에 준하여 처리됨
2) 대금 환불 및 환불지연에 따른 배상금 지급 조건, 절차 등은 전자상거래 등에서의 소비자 보호에 관한 법률에 따라 처리함
총 상품 금액 304,380
  • 할인율 10%계산
열기버튼

주문수량

총 상품 금액 304,380
닫기버튼

장바구니로 이동하시겠습니까?

배송정보 안내

  • 긴급배송

    • 긴급배송은 FedEx, DHL 등의 서비스를 이용.
    • 비용 40,000원 발생.
    • 출고 및 배송 기간은 약 14일 이내
  • 일반배송

    • 일반배송은 무료배송.
    • 출고 및 배송 기간은 30일 소요
로딩중...